Object-Assisted Question Featurization and Multi-CNN Image Feature Fusion for Visual Question Answering

Author:

Manmadhan Sruthy1,Kovoor Binsu C.2

Affiliation:

1. School of Engineering, Cochin University of Science and Technology, India & Department of Computer Science and Engineering, NSS College of Engineering, India

2. School of Engineering, Cochin University of Science and Technology, India

Abstract

Visual question answering (VQA) demands a meticulous and concurrent proficiency in image interpretation and natural language understanding to correctly answer the question about an image. The existing VQA solutions either focus only on improving the joint multi-modal embedding or on the fine-tuning of visual understanding through attention. This research, in contrast to the current trend, investigates the feasibility of an object-assisted language understanding strategy titled semantic object ranking (SOR) framework for VQA. The proposed system refines the natural language question representation with the help of detected visual objects. For multi-CNN image representation, the system employs canonical correlation analysis (CCA). The suggested model is assessed using accuracy and WUPS measures on the DAQUAR dataset. On the DAQUAR dataset, the analytical outcomes reveal that the presented system outperforms the prior state-of-the-art by a significant factor. In addition to the quantitative analysis, proper illustrations are supplied to observe the reasons for performance improvement.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Reference48 articles.

1. Vqa: Visual question answering.;S.Antol;Proceedings of the IEEE international conference on computer vision,2015

2. Cadene, R., Ben-Younes, H., Cord, M., & Thome, N. (2019). Murel: Multimodal relational reasoning for visual question answering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1989-1998). IEEE.

3. Chen, K., Wang, J., Chen, L. C., Gao, H., Xu, W., & Nevatia, R. (2015). Abc-cnn: An attention based convolutional neural network for visual question answering. arXiv:1511.05960.

4. Frustratingly Easy Meta-Embedding – Computing Meta-Embeddings by Averaging Source Word Embeddings

5. Text classification by untrained sentence embeddings

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3