Development of a convolutional neural network based regional flood frequency analysis model for South-east Australia

Author:

Afrin Nilufa,Ahamed Farhad,Rahman AtaurORCID

Abstract

AbstractFlood is one of the worst natural disasters, which causes significant damage to economy and society. Flood risk assessment helps to reduce flood damage by managing flood risk in flood affected areas. For ungauged catchments, regional flood frequency analysis (RFFA) is generally used for design flood estimation. This study develops a Convolutional Neural Network (CNN) based RFFA technique using data from 201 catchments in south-east Australia. The CNN based RFFA technique is compared with multiple linear regression (MLR), support vector machine (SVM), and decision tree (DT) based RFFA models. Based on a split-sample validation using several statistical indices such as relative error, bias and root mean squared error, it is found that the CNN model performs best for annual exceedance probabilities (AEPs) in the range of 1 in 5 to 1 in 100, with median relative error values in the range of 29–44%. The DT model shows the best performance for 1 in 2 AEP, with a median relative error of 24%. The CNN model outperforms the currently recommended RFFA technique in Australian Rainfall and Runoff (ARR) guideline. The findings of this study will assist to upgrade RFFA techniques in ARR guideline in near future.

Funder

Western Sydney University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3