A Method for Improving the Pronunciation Quality of Vocal Music Students Based on Big Data Technology

Author:

Shen Dan1,Zhao Wenjia1

Affiliation:

1. Harbin University, China

Abstract

With the development of internet technology, big data has been used to evaluate the singing and pronunciation quality of vocal students. However, current methods have several problems such as poor information fusion efficiency, low algorithm robustness, and low recognition accuracy under low signal-to-noise ratio. To address these issues, this article proposes a new method for evaluating sound quality based on one-dimensional convolutional neural networks. It uses sound preprocessing, BP neural networks, wavelet neural networks, and one-dimensional CNNs to improve pronunciation quality. The proposed 1D CNN network is more suitable for one-dimensional sound signals and can effectively solve problems such as feature information fusion, pitch period detection, and network construction. It can evaluate singing art sound quality with minimum errors, good robustness, and strong portability. This method can be used for the evaluation and diagnosis of voice diseases, helping to improve students' professional abilities.

Publisher

IGI Global

Subject

Computer Science Applications,Education

Reference31 articles.

1. Information technology used by millennial good English language learners in an Indonesian university to improve their English skills.;H.Atmowardoyo;Solid State Technology,2020

2. Using shadowing with mobile technology to improve L2 pronunciation

3. Fouz-González, J. (2020). Using apps for pronunciation training: An empirical evaluation of the English File Pronunciation app. 24(1), 62-85.

4. Evaluation Model of College English Multimedia Teaching Effect Based on Deep Convolutional Neural Networks

5. Hao, W. (2021). Pronunciation correction of students in music classroom based on computer voice simulation. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-10.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3