Evaluation Model of College English Multimedia Teaching Effect Based on Deep Convolutional Neural Networks

Author:

Geng Limei1ORCID

Affiliation:

1. Department of Foreign Language, Jingdezhen University, Jingdezhen 333000, Jiangxi, China

Abstract

With the acceleration of global integration, the demand for English instruction is increasingly rising. On the other hand, Chinese English learners struggle to learn spoken English due to the limited English learning environment and teaching conditions in China. The advancement of artificial intelligence technology and the advancement of language teaching and learning techniques have ushered in a new era of language learning and teaching. Deep learning technology makes it possible to solve this problem. Speech recognition and assessment technology are at the heart of language learning, and speech recognition technology is the foundation. Because of the complex changes in speech pronunciation, a large amount of speech signal data, the high dimension of speech characteristic parameters, and a large amount of speech recognition and evaluation computation, the large volume of speech signal processing requires higher requirements of hardware and software resources and algorithms. However, traditional speech recognition algorithms, such as dynamic time-warped algorithms, hidden Markov models, and artificial neural networks, have their advantages and disadvantages. They have encountered unprecedented bottlenecks, so it is difficult to improve their accuracy and speed. To solve these problems, this paper focuses on evaluating the multimedia teaching effect of college English. A multilevel residual convolutional neural network algorithm for oral English pronunciation recognition is proposed based on a deep convolutional neural network. The experiments show that our algorithm can assist learners in identifying inconsistencies between their pronunciation and standard pronunciation and correcting pronunciation errors, resulting in improved oral English learning performance.

Funder

Leading Group of Jiangxi Provincial Educational Programming Research Topics

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3