Query Frequency based View Selection

Author:

Syed Mohammad Haider1ORCID,Kumar T.V. Vijay2

Affiliation:

1. Saudi Electronic University, Saudi Arabia

2. School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India

Abstract

View selection deals with the selection of appropriate sets of views capable of improving the response times for queries while conforming to space constraints. Materializing all views is infeasible, as the number of possible views is exponential with respect to the number of dimensions and, thus, would not fit within the available storage space. Further, optimal view selection is an NP-Complete problem. Thus, the only remaining alternative is to select a subset of views that reduce the query response time and fit within the available space for materialization. The most fundamental greedy view selection algorithm HRUA considers the size parameter for computing the Top-K views for materialization. In each iteration, it computes the benefit, with respect to size, of all non-selected views, and selects the one entailing the highest benefit for materialization. Though these selected views may be beneficial in respect of their size, they may not be capable of answering large numbers of future queries thereby becoming an unnecessary space overhead. Existing query frequency based view selection algorithms, which address this problem, have been compared in this paper. Experimental results show that each of these algorithms, in comparison to HRUA, are able to select fairly good quality views that provide answers to comparatively greater numbers of queries. Materializing these selected views would facilitate the business decision making process.

Publisher

IGI Global

Subject

Strategy and Management,Business and International Management

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Objective Big Data View Materialization Using NSGA-III;International Journal of Decision Support System Technology;2022-10-06

2. A Multi-Objective Approach to Big Data View Materialization;International Journal of Knowledge and Systems Science;2021-04

3. Materialized View Selection Using Swap Operator Based Particle Swarm Optimization;International Journal of Distributed Artificial Intelligence;2021-01

4. A Multi-Objective Approach for Materialized View Selection;Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms;2021

5. Multi-objective materialized view selection using NSGA-II;International Journal of System Assurance Engineering and Management;2020-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3