Using a Sliding-Frame Approach for Scheduling Large and Complex IT Projects

Author:

Cohen Yuval1ORCID,Zwikael Ofer2,Sadeh Arik3

Affiliation:

1. Open University and Afeka Academic College, Israel

2. Australian National University, Australia

3. Holon Institute of Technology, Israel

Abstract

Many IT projects and software development projects are very complex and sophisticated involving a large coordinated team. Such projects are a constant part of the operations of software companies such as Microsoft, SAP, Oracle, Google, Yahoo, IBM, and others. Many other companies carry large software projects as part of their IT operations. As a result of the size and complexity of such projects, a rolling horizon approach for their planning and management is not only plausible but also desirable. For large projects, traditional project scheduling techniques cannot provide an optimal and timely solution to minimum project duration under precedence and resource constraints. This paper proposes a technique that allows utilizing non-polynomial (NP) algorithms in a heuristic manner – generating high quality schedules in reasonable time. This approach can be applied efficiently for solving most project scheduling problems. The main advantage of this approach is its ability to dissect the original problem into small sub-problems of a controllable size to which exact techniques can be applied. Thus, it neutralizes the complexity of the applied algorithms (and their non-polynomial growth). Moreover, the same technique could be used for implementing a rolling-horizon approach in project planning and management.

Publisher

IGI Global

Subject

Management of Technology and Innovation,Information Systems and Management,Organizational Behavior and Human Resource Management,Strategy and Management,Communication,Management Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3