Neuro-Based Consensus Seeking for Nonlinear Uncertainty Multi-Agent Systems Constrained by Dead-Zone Input

Author:

Qin Zhenhua1,Gai Rongjun2

Affiliation:

1. School of Modern Information Technology, Zhejiang Institute of Mechanical and Electrical Engineering, China

2. Zhejiang Branch of China Mobile Group Design Institute Co., Ltd., China

Abstract

The topic about consensus target track seeking for high-order nonlinear multi-agent systems (MASs) with unmodeled dynamics, dynamic disturbances, and dead-zone input is considered in the paper. Using the strong nonlinear map characteristic of radial basis function neural networks (RBFNNs), the complex functions arising from recursive procedure are simplified. Also, inspired by input-to-state practical stability (ISpS), the authors construct a dynamical signal in order to counteract the impact of unmodeled dynamics and dynamic disturbances. The bounded inequality expression has been applied to tackle the unknown input of dead zone. Based on this, consensus control protocol suitable for nonlinear constraints has been constructed by using the recursive backstepping technique and adaptive neural network method. Theoretical analysis indicates not only the uniform boundary of all signals in the closed-loop under the neuro-based consensus controller, but uniform ultimate convergence of consensus tracking errors. The final simulations also confirmed the correctness of the theoretical analysis.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3