Event-triggered adaptive neural network backstepping sliding mode control of fractional-order multi-agent systems with input delay

Author:

Chen Tao1ORCID,Yuan Jiaxin1ORCID,Yang Hui1ORCID

Affiliation:

1. School of Air Transportation, Shanghai University of Engineering Science, Shanghai, China

Abstract

This article investigates the consensus problem for a class of fractional-order multi-agent systems with input delay. Each follower is modeled as a system with input delay and nonlinear dynamics. To avoid “explosion of complexity” and obtain fractional derivatives for virtual control functions continuously, dynamic surface control technology is introduced into an adaptive neural network backstepping controller. A dynamic event-triggered scheme without Zeno behavior is considered, which can reduce the utilization of communication resources. The sliding mode control technology is introduced to enhance robustness. The Pade delay approximation method is extended to fractional-order systems, which converts the original systems into systems without input delay. The stability of systems is ensured by the constructed Lyapunov functions. Examples and simulation results show that the consensus tracking errors can quickly converge and all the followers can synchronize to the leader by the proposed method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3