Intrusion Detection Using Normalized Mutual Information Feature Selection and Parallel Quantum Genetic Algorithm

Author:

Ling Zhang1,Hao Zhang Jia1

Affiliation:

1. Zhengzhou University of Light Industry, China

Abstract

This paper presents a detection algorithm using normalized mutual information feature selection and cooperative evolution of multiple operators based on adaptive parallel quantum genetic algorithm (NMIFS MOP- AQGA). The proposed algorithm is to address the problems that the intrusion detection system (IDS) has lower the detection speed, less adaptability and lower detection accuracy. In order to achieve an effective reduction for high-dimensional feature data, the NMIFS method is used to select the best feature combination. The best features are sent to the MOP- AQGA classifier for learning and training, and the intrusion detectors are obtained. The data are fed into the detection algorithm to ultimately generate accurate detection results. The experimental results on real abnormal data demonstrate that the NMIFS MOP- AQGA method has higher detection accuracy, lower false negative rate and higher adaptive performance than the existing detection methods, especially for small samples sets.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3