A hybrid intrusion detection approach based on message queuing telemetry transport (MQTT) protocol in industrial internet of things

Author:

Francis Georg Thamer1,Souri Alireza1ORCID,İnanç Nihat2

Affiliation:

1. Department of Software Engineering, Faculty of Engineering Haliç University Istanbul Turkey

2. Department of Electrical and Electronics Engineering, Faculty of Engineering Haliç University Istanbul Turkey

Abstract

AbstractThe number of attacks against Industrial Internet of Things (IIoT) devices has increased over the past years, particularly on widely used communication protocols like Message Queuing Telemetry Transfer (MQTT). The fast increase in IIoT applications brings both critical challenges and technical gaps in cybersecurity. On the other hand, traditional cyber‐attack detection approaches scrap to address and support the run‐time responsibilities of IIoT environments. This study presents a hybrid Genetic Algorithm and Random Forest (GA_RF) method for detecting cyber‐attacks in Industrial Control Machines (ICS) that use MQTT protocol in the IIoT environment. This architecture integrates ICS with edge devices and cloud servers, using a GA_RF algorithm to detect anomalies in data collected by sensors. Normal data is processed locally and then sent to the cloud for storage and return, ensuring continuous monitoring and security. Also, the MQTT‐IOT‐IDS2020 dataset as a real test case was applied for prediction of the proposed GA_RF method with compare to some other powerful machine and deep learning models. The experimental results show that the proposed GA_RF method has an optimum accuracy of 99.87%–100% for detecting cyber‐attacks. This hybrid algorithm also achieved 0–0.0015 in Mean Absolute Error (MAE) and 100% in Precision, Recall, and F‐score factors. This result led to the proposed architecture, which connects the ICS to a server while running GA_RF on the IIoT environment. In conclusion, this study indicates the effectiveness of GA_RF and aims to improve security by using the MQTT protocol in IIoT.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3