Affiliation:
1. Università degli studi di Milano, Milan, Italy
2. Technological Educational Institute of Crete, Heraklion, Greece
Abstract
Intelligent farming as part of the green revolution is advancing the world of agriculture in such a way that farms become dynamic, with the overall scope being the optimization of animal production in an eco-friendly way. In this direction, this study proposes exploiting the acoustic modality for farm monitoring. Such information could be used in a stand-alone or complimentary mode to monitor the farm constantly at a great level of detail. To this end, the authors designed a scheme classifying the vocalizations produced by farm animals. More precisely, a directed acyclic graph was proposed, where each node carries out a binary classification task using hidden Markov models. The topological ordering follows a criterion derived from the Kullback-Leibler divergence. In addition, a transfer learning-based module for handling concept drifts was proposed. During the experimental phase, the authors employed a publicly available dataset including vocalizations of seven animals typically encountered in farms, where promising recognition rates were reported.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献