A Framework for the Optimization of Complex Cyber-Physical Systems via Directed Acyclic Graph

Author:

Castejón-Limas ManuelORCID,Fernández-Robles LauraORCID,Alaiz-Moretón HéctorORCID,Cifuentes-Rodriguez JaimeORCID,Fernández-Llamas CaminoORCID

Abstract

Mathematical modeling and data-driven methodologies are frequently required to optimize industrial processes in the context of Cyber-Physical Systems (CPS). This paper introduces the PipeGraph software library, an open-source python toolbox for easing the creation of machine learning models by using Directed Acyclic Graph (DAG)-like implementations that can be used for CPS. scikit-learn’s Pipeline is a very useful tool to bind a sequence of transformers and a final estimator in a single unit capable of working itself as an estimator. It sequentially assembles several steps that can be cross-validated together while setting different parameters. Steps encapsulation secures the experiment from data leakage during the training phase. The scientific goal of PipeGraph is to extend the concept of Pipeline by using a graph structure that can handle scikit-learn’s objects in DAG layouts. It allows performing diverse operations, instead of only transformations, following the topological ordering of the steps in the graph; it provides access to all the data generated along the intermediate steps; and it is compatible with GridSearchCV function to tune the hyperparameters of the steps. It is also not limited to (X,y) entries. Moreover, it has been proposed as part of the scikit-learn-contrib supported project, and is fully compatible with scikit-learn. Documentation and unitary tests are publicly available together with the source code. Two case studies are analyzed in which PipeGraph proves to be essential in improving CPS modeling and optimization: the first is about the optimization of a heat exchange management system, and the second deals with the detection of anomalies in manufacturing processes.

Funder

Spanish Ministry of Economy, Industry and Competitiveness

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence in lean manufacturing: digitalization with a human touch?;International Journal of Lean Six Sigma;2024-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3