Effective and Fast Face Recognition System Using Complementary OC-LBP and HOG Feature Descriptors With SVM Classifier

Author:

Singh Geetika1,Chhabra Indu2

Affiliation:

1. MCM DAV College for Women, Chandigarh, India

2. Department of Computer Science and Applications, Panjab University, Chandigarh, India

Abstract

Selection and implementation of a face descriptor that is both discriminative and computationally efficient is crucial. Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG) have been proven effective for face recognition. LBPs are fast to compute and are easy to extract the texture features. OC-LBP descriptors have been proposed to reduce the dimensionality of LBP while increasing the discrimination power. HOG features capture the edge features that are invariant to rotation and light. Owing to the fact that both texture and edge information is important for face representation, this article proposes a framework to combine OC-LBP and HOG. First, OC-LBP and HOG features are extracted, normalized and fused together. Next, classification is achieved using a histogram-based chi-square, square-chord and extended-canberra metrics and SVM with a normalized chi-square kernel. Experiments on three benchmark databases: ORL, Yale and FERET show that the proposed method is fast to compute and outperforms other similar state-of-the-art methods.

Publisher

IGI Global

Subject

General Computer Science

Reference60 articles.

1. Face Recognition with Local Binary Patterns.;T.Ahonen;Eighth European Conference on Computer Vision,2004

2. Face recognition using HOG–EBGM

3. A Feature Based Face Recognition Technique using Zernike Moments.;W.Arnold;RNSA Security Technology Conference,2007

4. Local appearance based face recognition method using block based steerable pyramid transform

5. AT&T Laboratories. Cambridge (2002). Olivetti Research Laboratory (ORL) face database. Retrieved from www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3