Abstract
AbstractTo improve the efficiency of traditional face recognition techniques, this paper proposes a novel face recognition algorithm called Image Gradient Feature Compensation (IGFC). Based on the gradients along four directions in an image, a fusion algorithm and a compensation method are implemented to obtain features of the original image. In this study, gradient magnitude maps of a face image are calculated along four directions. Fusion gradients and differential fusion gradients are produced by fusing the four gradient magnitude maps of a face image in multiple ways, and they are used as compensation variables to compensate the appropriate coefficients on the original image and build IGFC feature maps of the original face image. Subsequently, IGFC feature maps are divided into several blocks to calculate the concatenated histogram over all blocks, which is in turn utilized as the feature descriptor for face recognition. Principal component analysis (PCA) is used to cut down the number of dimensions in high-dimensional features, which are recognized by the Support Vector Machine (SVM) classifier. Finally, the proposed IGFC method is superior to traditional methods as suggested by verification studies on YALE, ORL, CMU_PIE, and FERET face databases. When the LibSVM parameter was set to ‘-s 0 -t 2 -c 16 -g 0.0009765625’, the algorithm achieved 100% recognition on Yale and ORL data sets, 92.16% on CMU_PIE data sets, and 74.3% on FERET data sets. The average time for simultaneous completion of the data sets examined was 1.93 s, and the algorithm demonstrated a 70.71% higher running efficiency than the CLBP algorithm. Therefore, the proposed algorithm is highly efficient in feature recognition with excellent computational efficiency.
Funder
Characteristic Innovation Research Fund for Universities of Guangdong Province
Science and Technology Program of Shaoguan
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献