A fast face recognition based on image gradient compensation for feature description

Author:

Zhang YanhuORCID,Yan Lijuan

Abstract

AbstractTo improve the efficiency of traditional face recognition techniques, this paper proposes a novel face recognition algorithm called Image Gradient Feature Compensation (IGFC). Based on the gradients along four directions in an image, a fusion algorithm and a compensation method are implemented to obtain features of the original image. In this study, gradient magnitude maps of a face image are calculated along four directions. Fusion gradients and differential fusion gradients are produced by fusing the four gradient magnitude maps of a face image in multiple ways, and they are used as compensation variables to compensate the appropriate coefficients on the original image and build IGFC feature maps of the original face image. Subsequently, IGFC feature maps are divided into several blocks to calculate the concatenated histogram over all blocks, which is in turn utilized as the feature descriptor for face recognition. Principal component analysis (PCA) is used to cut down the number of dimensions in high-dimensional features, which are recognized by the Support Vector Machine (SVM) classifier. Finally, the proposed IGFC method is superior to traditional methods as suggested by verification studies on YALE, ORL, CMU_PIE, and FERET face databases. When the LibSVM parameter was set to ‘-s 0 -t 2 -c 16 -g 0.0009765625’, the algorithm achieved 100% recognition on Yale and ORL data sets, 92.16% on CMU_PIE data sets, and 74.3% on FERET data sets. The average time for simultaneous completion of the data sets examined was 1.93 s, and the algorithm demonstrated a 70.71% higher running efficiency than the CLBP algorithm. Therefore, the proposed algorithm is highly efficient in feature recognition with excellent computational efficiency.

Funder

Characteristic Innovation Research Fund for Universities of Guangdong Province

Science and Technology Program of Shaoguan

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3