Interpretation the Influence of Hydrometeorological Variables on Soil Temperature Prediction Using the Potential of Deep Learning Model

Author:

Elsayed Salah,Gupta Meenu,Chaudhary Gopal,Taneja Soham,Gaur Harshit,Gad Mohamed,Hamdy Eid Mohamed,Kovács Attila,Péter Szűcs,Gaagai Aissam,Schmidhalter Urs

Abstract

The importance of soil temperature (ST) quantification can contribute to diverse ecological modelling processes as well as for agricultural activities. Over the literature, it was evident that soil supports more than 95% of living habitats and food production on earth, and this demand will increase to 500 years’ times in expected consumption in 2060. This paper aims to analyses the contrastive approach to predict the ST of a certain region with the help of different machine learning models, including Random Forest (RF), Support Vector, Neural Network (NN), Linear Regression (LR) and Long Short-Term Memory Network (LSTM). The study was utilized the hourly humidity, dew point, rainfall, solar radiation, and barometer readings for the formulation of the models. Various performance criteria were employed to evaluate the prediction skills of the models and the results depicted that the promising ability belong to LSTM despite the acceptable prediction accuracy achieved by other models. The modelling outcomes revealed that LSTM model attained the lowest root mean square error (RMSE = 3.3255) decreased the average prediction error by 6% with regards to NN (RMSE = 3.4796), SVM (RMSE = 3.5766), and RF (RMSE = 3.8128), and improved the prediction accuracy of LR by 15%. The model is in compliance with the latest machine learning industry standards and allows low-cost experimental performances on low powered edge computing devices.

Publisher

Knowledge-based Engineering and Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3