Multi-step ahead forecasting of electrical conductivity in rivers by using a hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) model enhanced by Boruta-XGBoost feature selection algorithm

Author:

Karbasi Masoud,Ali Mumtaz,Bateni Sayed M.,Jun Changhyun,Jamei Mehdi,Farooque Aitazaz Ahsan,Yaseen Zaher Mundher

Abstract

AbstractElectrical conductivity (EC) is widely recognized as one of the most essential water quality metrics for predicting salinity and mineralization. In the current research, the EC of two Australian rivers (Albert River and Barratta Creek) was forecasted for up to 10 days using a novel deep learning algorithm (Convolutional Neural Network combined with Long Short-Term Memory Model, CNN-LSTM). The Boruta-XGBoost feature selection method was used to determine the significant inputs (time series lagged data) to the model. To compare the performance of Boruta-XGB-CNN-LSTM models, three machine learning approaches—multi-layer perceptron neural network (MLP), K-nearest neighbour (KNN), and extreme gradient boosting (XGBoost) were used. Different statistical metrics, such as correlation coefficient (R), root mean square error (RMSE), and mean absolute percentage error, were used to assess the models' performance. From 10 years of data in both rivers, 7 years (2012–2018) were used as a training set, and 3 years (2019–2021) were used for testing the models. Application of the Boruta-XGB-CNN-LSTM model in forecasting one day ahead of EC showed that in both stations, Boruta-XGB-CNN-LSTM can forecast the EC parameter better than other machine learning models for the test dataset (R = 0.9429, RMSE = 45.6896, MAPE = 5.9749 for Albert River, and R = 0.9215, RMSE = 43.8315, MAPE = 7.6029 for Barratta Creek). Considering the better performance of the Boruta-XGB-CNN-LSTM model in both rivers, this model was used to forecast 3–10 days ahead of EC. The results showed that the Boruta-XGB-CNN-LSTM model is very capable of forecasting the EC for the next 10 days. The results showed that by increasing the forecasting horizon from 3 to 10 days, the performance of the Boruta-XGB-CNN-LSTM model slightly decreased. The results of this study show that the Boruta-XGB-CNN-LSTM model can be used as a good soft computing method for accurately predicting how the EC will change in rivers.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3