Predicting Language Difficulties in Middle Childhood From Early Developmental Milestones: A Comparison of Traditional Regression and Machine Learning Techniques

Author:

Armstrong Rebecca123,Symons Martyn45,Scott James G.26,Arnott Wendy L.17,Copland David A.12,McMahon Katie L.3,Whitehouse Andrew J. O.4

Affiliation:

1. School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Australia

2. Centre for Clinical Research, University of Queensland, Brisbane, Australia

3. Centre for Advanced Imaging, University of Queensland, Brisbane, Australia

4. Telethon Kids Institute, University of Western Australia, Perth

5. National Health and Medical Research Council (NHMRC) Fetal Alcohol Spectrum Disorder (FASD) Research Australia, Centre of Research Excellence, Perth

6. Metro North Mental Health, Royal Brisbane and Women's Hospital, Australia

7. Hear and Say, Brisbane, Australia

Abstract

Purpose The current study aimed to compare traditional logistic regression models with machine learning algorithms to investigate the predictive ability of (a) communication performance at 3 years old on language outcomes at 10 years old and (b) broader developmental skills (motor, social, and adaptive) at 3 years old on language outcomes at 10 years old. Method Participants ( N = 1,322) were drawn from the Western Australian Pregnancy Cohort (Raine) Study (Straker et al., 2017). A general developmental screener, the Infant Monitoring Questionnaire (Squires, Bricker, & Potter, 1990), was completed by caregivers at the 3-year follow-up. Language ability at 10 years old was assessed using the Clinical Evaluation of Language Fundamentals–Third Edition (Semel, Wiig, & Secord, 1995). Logistic regression models and interpretable machine learning algorithms were used to assess predictive abilities of early developmental milestones for later language outcomes. Results Overall, the findings showed that prediction accuracies were comparable between logistic regression and machine learning models using communication-only performance as well as performance on communication and broader developmental domains to predict language performance at 10 years old. Decision trees are incorporated to visually present these findings but must be interpreted with caution because of the poor accuracy of the models overall. Conclusions The current study provides preliminary evidence that machine learning algorithms provide equivalent predictive accuracy to traditional methods. Furthermore, the inclusion of broader developmental skills did not improve predictive capability. Assessment of language at more than 1 time point is necessary to ensure children whose language delays emerge later are identified and supported. Supplemental Material https://doi.org/10.23641/asha.6879719

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3