Auditory-Motor Perturbations of Voice Fundamental Frequency: Feedback Delay and Amplification

Author:

Weerathunge Hasini R.1ORCID,Abur Defne2ORCID,Enos Nicole M.13ORCID,Brown Katherine M.2ORCID,Stepp Cara E.124ORCID

Affiliation:

1. Department of Biomedical Engineering, Boston University, MA

2. Department of Speech, Language, and Hearing Sciences, Boston University, MA

3. Department of Computer Engineering, Boston University, MA

4. Department of Otolaryngology—Head and Neck Surgery, Boston University School of Medicine, MA

Abstract

Purpose Gradual and sudden perturbations of vocal fundamental frequency ( f o ), also known as adaptive and reflexive f o perturbations, are techniques to study the influence of auditory feedback on voice f o control mechanisms. Previous vocal f o perturbations have incorporated varied setup-specific feedback delays and amplifications. Here, we investigated the effects of feedback delays (10–100 ms) and amplifications on both adaptive and reflexive f o perturbation paradigms, encapsulating the variability in equipment-specific delays (3–45 ms) and amplifications utilized in previous experiments. Method Responses to adaptive and reflexive f o perturbations were recorded in 24 typical speakers for four delay conditions (10, 40, 70, and 100 ms) or three amplification conditions (−10, +5, and +10 dB relative to microphone) in a counterbalanced order. Repeated-measures analyses of variance were carried out on the magnitude of f o responses to determine the effect of feedback condition. Results There was a statistically significant effect of the level of auditory feedback amplification on the response magnitude during adaptive f o perturbations, driven by the difference between +10- and −10-dB amplification conditions (hold phase difference: M = 38.3 cents, SD = 51.2 cents; after-effect phase: M = 66.1 cents, SD = 84.6 cents). No other statistically significant effects of condition were found for either paradigm. Conclusions Experimental equipment delays below 100 ms in behavioral paradigms do not affect the results of f o perturbation paradigms. As there is no statistically significant difference between the response magnitudes elicited by +5- and +10-dB auditory amplification conditions, this study is a confirmation that an auditory feedback amplification of +5 dB relative to microphone is sufficient to elicit robust compensatory responses for f o perturbation paradigms.

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3