Monitoring Working Memory Load during Computer-Based Tasks with EEG Pattern Recognition Methods

Author:

Gevins Alan1,Smith Michael E.1,Leong Harrison1,McEvoy Linda1,Whitfield Susan1,Du Robert1,Rush Georgia1

Affiliation:

1. SAM Technology and EEG Systems Laboratory, San Francisco, California

Abstract

We assessed working memory load during computer use with neural network pattern recognition applied to EEG spectral features. Eight participants performed high-, moderate-, and low-load working memory tasks. Frontal theta EEG activity increased and alpha activity decreased with increasing load. These changes probably reflect task difficulty-related increases in mental effort and the proportion of cortical resources allocated to task performance. In network analyses, test data segments from high and low load levels were discriminated with better than 95% accuracy. More than 80% of test data segments associated with a moderate load could be discriminated from high- or low-load data segments. Statistically significant classification was also achieved when applying networks trained with data from one day to data from another day, when applying networks trained with data from one task to data from another task, and when applying networks trained with data from a group of participants to data from new participants. These results support the feasibility of using EEG-based methods for monitoring cognitive load during human-computer interaction.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3