Data-driven analysis and prediction of COVID-19 infection in Southeast Asia by using a phenomenological model

Author:

Zuhairoh FaihatuzORCID,Rosadi DediORCID

Abstract

COVID-19 has spread throughout the world, including in Southeast Asia. Many studies have made predictions using various models. However, very few are data-driven based. Meanwhile for the COVID-19 case, which is still ongoing, it is very suitable to use data-driven approach with phenomenological models. This paper aimed to obtain effective forecasting models and then predict when COVID-19 in Southeast Asia will peak and end using daily cumulative case data. The research applied the Richards curve and the logistic growth model, combining the two models to make prediction of the COVID-19 cases in Southeast Asia, both the countries with one pandemic wave or those with more than one pandemic wave. The best prediction results were obtained using the Richards curve with the logistic growth model parameters used as the initial values. In the best scenario, the Southeast Asia region is expected to be free from the COVID-19 pandemic at the end of 2021. These modeling results are expected to provide information about the provision of health facilities and how to handle infectious disease outbreaks in the future.

Publisher

Pakistan Journal of Statistics and Operation Research

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Modeling and Simulation,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-driven mathematical modeling approaches for COVID-19: A survey;Physics of Life Reviews;2024-09

2. Multi-state SVIRD Model with Continuous-time Markov Chain Assumption on the Spread of Infectious Diseases;Austrian Journal of Statistics;2024-01-15

3. Prediction of disease outbreaks with the SIR model and Richards model in multi-wave cases;4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2022);2023

4. Real-time prediction for multi-wave COVID-19 outbreaks;Communications for Statistical Applications and Methods;2022-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3