Multi-state SVIRD Model with Continuous-time Markov Chain Assumption on the Spread of Infectious Diseases

Author:

Zuhairoh Faihatuz,Rosadi Dedi,Effendie Adhitya Ronnie

Abstract

The spread of infectious diseases is generally described using mathematical models. This paper discusses the spread of infectious diseases using a multi-state SVIRD model, assuming that a continuous-time Markov chain (CTMC) occurs in a closed population and is examined regularly. This article aims to generate transition probabilities and parameter estimates using the maximum likelihood method. The multi-state SVIRD model assuming CTMC uses a transition intensity and transition probability approach consisting of five primary states: susceptible, vaccinated, infected, recovered, and deceased. The infected state is divided into two: infected before and after being vaccinated. The result is an estimator of transition intensity with sojourn time which is exponentially distributed to produce a transition probability matrix. Then the algorithm for the CTMC SVIRD model is given. The multi-state SVIRD model algorithm can be used directly if the epidemic case is still in single-wave to determine the transition probability. In contrast, for multi-wave cases, it is necessary to detect changepoints to determine wave boundaries to make predictions more accurate. The main contributions of this study are using the CTMC assumption, a stochastic model for determining the parameters of the differential equation formed by the compartment model and adding vaccinated status to the model. In addition, it also provides ways to overcome multi-wave epidemic cases so the prediction results are more accurate.

Publisher

Austrian Statistical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3