Handbook for Efficiently Quantifying Robustness of Magic

Author:

Hamaguchi Hiroki1,Hamada Kou1,Yoshioka Nobuyuki234

Affiliation:

1. Graduate School of Information Science and Technology, University of Tokyo, Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

2. Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

3. Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Wako-shi, Saitama 351-0198, Japan

4. JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

Abstract

The nonstabilizerness, or magic, is an essential quantum resource to perform universal quantum computation. Robustness of magic (RoM) in particular characterizes the degree of usefulness of a given quantum state for non-Clifford operation. While the mathematical formalism of RoM can be given in a concise manner, it is extremely challenging to determine the RoM in practice, since it involves superexponentially many pure stabilizer states. In this work, we present efficient novel algorithms to compute the RoM. The crucial technique is a subroutine that achieves the remarkable features in calculation of overlaps between pure stabilizer states: (i) the time complexity per each stabilizer is reduced exponentially, (ii) the space complexity is reduced superexponentially. Based on this subroutine, we present algorithms to compute the RoM for arbitrary states up to n=7 qubits on a laptop, while brute-force methods require a memory size of 86 TiB. As a byproduct, the proposed subroutine allows us to simulate the stabilizer fidelity up to n=8 qubits, for which naive methods require memory size of 86 PiB so that any state-of-the-art classical computer cannot execute the computation. We further propose novel algorithms that utilize the preknowledge on the structure of target quantum state such as the permutation symmetry of disentanglement, and numerically demonstrate our state-of-the-art results for copies of magic states and partially disentangled quantum states. The series of algorithms constitute a comprehensive “handbook'' to scale up the computation of the RoM, and we envision that the proposed technique applies to the computation of other quantum resource measures as well.

Funder

JST PRESTO

JST COI-NEXT

JST ERATO

JST CREST

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3