Multipartite Intrinsic Non-Locality and Device-Independent Conference Key Agreement

Author:

Philip Aby12,Kaur Eneet34,Bierhorst Peter5,Wilde Mark M.16

Affiliation:

1. Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA

2. School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850, USA

3. Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

4. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA

5. Department of Mathematics, University of New Orleans, Louisiana 70148, USA

6. School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850, USA

Abstract

In this work, we introduce multipartite intrinsic non-locality as a method for quantifying resources in the multipartite scenario of device-independent (DI) conference key agreement. We prove that multipartite intrinsic non-locality is additive, convex, and monotone under a class of free operations called local operations and common randomness. As one of our technical contributions, we establish a chain rule for two variants of multipartite mutual information, which we then use to prove that multipartite intrinsic non-locality is additive. This chain rule may be of independent interest in other contexts. All of these properties of multipartite intrinsic non-locality are helpful in establishing the main result of our paper: multipartite intrinsic non-locality is an upper bound on secret key rate in the general multipartite scenario of DI conference key agreement. We discuss various examples of DI conference key protocols and compare our upper bounds for these protocols with known lower bounds. Finally, we calculate upper bounds on recent experimental realizations of DI quantum key distribution.

Funder

Air Force Office of Scientific Research Award

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3