Tight Cramér-Rao type bounds for multiparameter quantum metrology through conic programming

Author:

Hayashi Masahito123,Ouyang Yingkai4ORCID

Affiliation:

1. School of Data Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, China

2. International Quantum Academy (SIQA), Futian District, Shenzhen 518048, China

3. Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, Japan

4. Department of Physics & Astronomy, University of Sheffield, Sheffield, S3 7RH, United Kingdom

Abstract

In the quest to unlock the maximum potential of quantum sensors, it is of paramount importance to have practical measurement strategies that can estimate incompatible parameters with best precisions possible. However, it is still not known how to find practical measurements with optimal precisions, even for uncorrelated measurements over probe states. Here, we give a concrete way to find uncorrelated measurement strategies with optimal precisions. We solve this fundamental problem by introducing a framework of conic programming that unifies the theory of precision bounds for multiparameter estimates for uncorrelated and correlated measurement strategies under a common umbrella. Namely, we give precision bounds that arise from linear programs on various cones defined on a tensor product space of matrices, including a particular cone of separable matrices. Subsequently, our theory allows us to develop an efficient algorithm that calculates both upper and lower bounds for the ultimate precision bound for uncorrelated measurement strategies, where these bounds can be tight. In particular, the uncorrelated measurement strategy that arises from our theory saturates the upper bound to the ultimate precision bound. Also, we show numerically that there is a strict gap between the previous efficiently computable bounds and the ultimate precision bound.

Funder

EPSRC

National Natural Science Foundation of China

Guangdong Provincial Key Laboratory

NUS startup grant

Quantum Engineering Programme grant

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3