Fully‐Optimized Quantum Metrology: Framework, Tools, and Applications

Author:

Liu Qiushi1ORCID,Hu Zihao2,Yuan Haidong2ORCID,Yang Yuxiang1ORCID

Affiliation:

1. QICI Quantum Information and Computation Initiative Department of Computer Science The University of Hong Kong Pokfulam Road Hong Kong China

2. Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Shatin Hong Kong China

Abstract

AbstractThis tutorial introduces a systematic approach for addressing the key question of quantum metrology: For a generic task of sensing an unknown parameter, what is the ultimate precision given a constrained set of admissible strategies. The approach outputs the maximal attainable precision (in terms of the maximum of quantum Fisher information) as a semidefinite program and optimal strategies as feasible solutions thereof. Remarkably, the approach can identify the optimal precision for different sets of strategies, including parallel, sequential, quantum SWITCH‐enhanced, causally superposed, and generic indefinite‐causal‐order strategies. The tutorial consists of a pedagogic introduction to the background and mathematical tools of optimal quantum metrology, a detailed derivation of the main approach, and various concrete examples. As shown in the tutorial, applications of the approach include, but are not limited to, strict hierarchy of strategies in noisy quantum metrology, memory effect in non‐Markovian metrology, and designing optimal strategies. Compared with traditional approaches, the approach here yields the exact value of the optimal precision, offering more accurate criteria for experiments and practical applications. It also allows for the comparison between conventional strategies and the recently discovered causally‐indefinite strategies, serving as a powerful tool for exploring this new area of quantum metrology.

Funder

University Research Committee, University of Hong Kong

University Grants Committee

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Guangdong Provincial Department of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3