Characterization of variational quantum algorithms using free fermions

Author:

Matos Gabriel1ORCID,Self Chris N.23ORCID,Papić Zlatko1ORCID,Meichanetzidis Konstantinos45,Dreyer Henrik6

Affiliation:

1. School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom

2. Quantinuum, Partnership House, Carlisle Place, London, SW1P 1BX, United Kingdom

3. Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom

4. Quantinuum, 17 Beaumont St., Oxford OX1 2NA, United Kingdom

5. Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom

6. Quantinuum, Leopoldstrasse 180, 80804 Munich, Germany

Abstract

We study variational quantum algorithms from the perspective of free fermions. By deriving the explicit structure of the associated Lie algebras, we show that the Quantum Approximate Optimization Algorithm (QAOA) on a one-dimensional lattice – with and without decoupled angles – is able to prepare all fermionic Gaussian states respecting the symmetries of the circuit. Leveraging these results, we numerically study the interplay between these symmetries and the locality of the target state, and find that an absence of symmetries makes nonlocal states easier to prepare. An efficient classical simulation of Gaussian states, with system sizes up to80and deep circuits, is employed to study the behavior of the circuit when it is overparameterized. In this regime of optimization, we find that the number of iterations to converge to the solution scales linearly with system size. Moreover, we observe that the number of iterations to converge to the solution decreases exponentially with the depth of the circuit, until it saturates at a depth which is quadratic in system size. Finally, we conclude that the improvement in the optimization can be explained in terms of better local linear approximations provided by the gradients.

Funder

Leverhulme Trust

EPSRC

German Federal Ministry of Education and Research

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Reference111 articles.

1. Amira Abbas, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Woerner. The power of quantum neural networks. Nature Computational Science, 1 (6): 403–409, 2021. ISSN 2662-8457. 10.1038/s43588-021-00084-1. URL https://doi.org/10.1038/s43588-021-00084-1.

2. V. Akshay, H. Philathong, E. Campos, D. Rabinovich, I. Zacharov, Xiao-Ming Zhang, and J. Biamonte. On circuit depth scaling for quantum approximate optimization, 2022. URL https://doi.org/10.1103/PhysRevA.106.042438.

3. F. Albertini and D. D'Alessandro. Notions of controllability for quantum mechanical systems, 2001. URL https://arxiv.org/abs/quant-ph/0106128.

4. Andrew Arrasmith, Zoë Holmes, M. Cerezo, and Patrick J. Coles. Equivalence of quantum barren plateaus to cost concentration and narrow gorges, 2021. URL https://doi.org/10.1088/2058-9565/ac7d06.

5. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Benjamin Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Edward Farhi, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Matthew P. Harrigan, Alan Ho, Sabrina Hong, Trent Huang, William J. Huggins, Lev Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V. Klimov, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark, Erik Lucero, Orion Martin, John M. Martinis, Jarrod R. McClean, Matt McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Hartmut Neven, Murphy Yuezhen Niu, Thomas E. O’Brien, Eric Ostby, Andre Petukhov, Harald Putterman, Chris Quintana, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Doug Strain, Kevin J. Sung, Marco Szalay, Tyler Y. Takeshita, Amit Vainsencher, Theodore White, Nathan Wiebe, Z. Jamie Yao, Ping Yeh, and Adam Zalcman. Hartree-fock on a superconducting qubit quantum computer. Science, 369 (6507): 1084–1089, 2020. 10.1126/science.abb9811. URL https://www.science.org/doi/abs/10.1126/science.abb9811.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3