Deep recurrent networks predicting the gap evolution in adiabatic quantum computing

Author:

Mohseni Naeimeh12,Navarrete-Benlloch Carlos341,Byrnes Tim56789,Marquardt Florian12

Affiliation:

1. Max-Planck-Institut für die Physik des Lichts, Staudtstrasse 2, 91058 Erlangen, Germany

2. Physics Department, University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany

3. Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

4. Shanghai Research Center for Quantum Sciences, Shanghai 201315, China

5. New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China

6. State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences,East China Normal University, Shanghai 200062, China

7. NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China

8. Center for Quantum and Topological Systems (CQTS), NYUAD Research Institute, New York University Abu Dhabi, UAE

9. Department of Physics, New York University, New York, NY 10003, USA

Abstract

In adiabatic quantum computing finding the dependence of the gap of the Hamiltonian as a function of the parameter varied during the adiabatic sweep is crucial in order to optimize the speed of the computation. Inspired by this challenge, in this work we explore the potential of deep learning for discovering a mapping from the parameters that fully identify a problem Hamiltonian to the aforementioned parametric dependence of the gap applying different network architectures. Through this example, we conjecture that a limiting factor for the learnability of such problems is the size of the input, that is, how the number of parameters needed to identify the Hamiltonian scales with the system size. We show that a long short-term memory network succeeds in predicting the gap when the parameter space scales linearly with system size. Remarkably, we show that once this architecture is combined with a convolutional neural network to deal with the spatial structure of the model, the gap evolution can even be predicted for system sizes larger than the ones seen by the neural network during training. This provides a significant speedup in comparison with the existing exact and approximate algorithms in calculating the gap.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3