Deep learning of many-body observables and quantum information scrambling

Author:

Mohseni Naeimeh12,Shi Junheng3,Byrnes Tim345,Hartmann Michael J.12

Affiliation:

1. Physics Department, Friedrich-Alexander Universität of Erlangen-Nuremberg, Staudtstr. 7, 91058 Erlangen, Germany

2. Max-Planck-Institut für die Physik des Lichts, Staudtstrasse 2, 91058 Erlangen, Germany

3. New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China

4. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

5. Department of Physics, New York University, New York, NY 10003, USA

Abstract

Machine learning has shown significant breakthroughs in quantum science, where in particular deep neural networks exhibited remarkable power in modeling quantum many-body systems. Here, we explore how the capacity of data-driven deep neural networks in learning the dynamics of physical observables is correlated with the scrambling of quantum information. We train a neural network to find a mapping from the parameters of a model to the evolution of observables in random quantum circuits for various regimes of quantum scrambling and test its generalization and extrapolation capabilities in applying it to unseen circuits. Our results show that a particular type of recurrent neural network is extremely powerful in generalizing its predictions within the system size and time window that it has been trained on for both, localized and scrambled regimes. These include regimes where classical learning approaches are known to fail in sampling from a representation of the full wave function. Moreover, the considered neural network succeeds in extrapolating its predictions beyond the time window and system size that it has been trained on for models that show localization, but not in scrambled regimes.

Funder

Quromorphic

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Q-GRID: Quantum Optimization for the Future Energy Grid;KI - Künstliche Intelligenz;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3