Simple and maximally robust processes with no classical common-cause or direct-cause explanation

Author:

Nery Marcello1,Quintino Marco Túlio23ORCID,Guérin Philippe Allard324,Maciel Thiago O.56,Vianna Reinaldo O.1

Affiliation:

1. Departamento de Física, Universidade Federal de Minas Gerais, Av. Pres. Antonio Carlos 6627 - Belo Horizonte, MG, Brazil - 31270-901.

2. Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria

3. Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria

4. Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, N2L 2Y5, Canada

5. Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil

6. Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil

Abstract

Guided by the intuition of coherent superposition of causal relations, recent works presented quantum processes without classical common-cause and direct-cause explanation, that is, processes which cannot be written as probabilistic mixtures of quantum common-cause and quantum direct-cause relations (CCDC). In this work, we analyze the minimum requirements for a quantum process to fail to admit a CCDC explanation and present "simple" processes, which we prove to be the most robust ones against general noise. These simple processes can be realized by preparing a maximally entangled state and applying the identity quantum channel, thus not requiring an explicit coherent mixture of common-cause and direct-cause, exploiting the possibility of a process to have both relations simultaneously. We then prove that, although all bipartite direct-cause processes are bipartite separable operators, there exist bipartite separable processes which are not direct-cause. This shows that the problem of deciding weather a process is direct-cause process is not equivalent to entanglement certification and points out the limitations of entanglement methods to detect non-classical CCDC processes. We also present a semi-definite programming hierarchy that can detect and quantify the non-classical CCDC robustnesses of every non-classical CCDC process. Among other results, our numerical methods allow us to show that the simple processes presented here are likely to be also the maximally robust against white noise. Finally, we explore the equivalence between bipartite direct-cause processes and bipartite processes without quantum memory, to present a separable process which cannot be realized as a process without quantum memory.

Funder

European Union’s Horizon 2020 research and innovation programme

Funder name: BeyondC, FQXi, John Templeton Foundation

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3