Characterising transformations between quantum objects, 'completeness' of quantum properties, and transformations without a fixed causal order

Author:

Milz Simon1234ORCID,Quintino Marco Túlio5ORCID

Affiliation:

1. School of Physics, Trinity College Dublin, Dublin 2, Ireland

2. Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, D02YN67, Ireland

3. Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria

4. Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria

5. Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract

Many fundamental and key objects in quantum mechanics are linear mappings between particular affine/linear spaces. This structure includes basic quantum elements such as states, measurements, channels, instruments, non-signalling channels and channels with memory, and also higher-order operations such as superchannels, quantum combs, n-time processes, testers, and process matrices which may not respect a definite causal order. Deducing and characterising their structural properties in terms of linear and semidefinite constraints is not only of foundational relevance, but plays an important role in enabling the numerical optimisation over sets of quantum objects and allowing simpler connections between different concepts and objects. Here, we provide a general framework to deduce these properties in a direct and easy to use way. While primarily guided by practical quantum mechanical considerations, we also extend our analysis to mappings between general linear/affine spaces and derive their properties, opening the possibility for analysing sets which are not explicitly forbidden by quantum theory, but are still not much explored. Together, these results yield versatile and readily applicable tools for all tasks that require the characterisation of linear transformations, in quantum mechanics and beyond. As an application of our methods, we discuss how the existence of indefinite causality naturally emerges in higher-order quantum transformations and provide a simple strategy for the characterisation of mappings that have to preserve properties in a 'complete' sense, i.e., when acting non-trivially only on parts of an input space.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3