Bending the rules of low-temperature thermometry with periodic driving

Author:

Glatthard Jonas1,Correa Luis A.1

Affiliation:

1. Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom

Abstract

There exist severe limitations on the accuracy of low-temperature thermometry, which poses a major challenge for future quantum-technological applications. Low-temperature sensitivity might be manipulated by tailoring the interactions between probe and sample. Unfortunately, the tunability of these interactions is usually very restricted. Here, we focus on a more practical solution to boost thermometric precision – driving the probe. Specifically, we solve for the limit cycle of a periodically modulated linear probe in an equilibrium sample. We treat the probe-sample interactions exactly and hence, our results are valid for arbitrarily low temperatures T and any spectral density. We find that weak near-resonant modulation strongly enhances the signal-to-noise ratio of low-temperature measurements, while causing minimal back action on the sample. Furthermore, we show that near-resonant driving changes the power law that governs thermal sensitivity over a broad range of temperatures, thus `bending' the fundamental precision limits and enabling more sensitive low-temperature thermometry. We then focus on a concrete example – impurity thermometry in an atomic condensate. We demonstrate that periodic driving allows for a sensitivity improvement of several orders of magnitude in sub-nanokelvin temperature estimates drawn from the density profile of the impurity atoms. We thus provide a feasible upgrade that can be easily integrated into low-T thermometry experiments.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3