On the optimality of the radical-pair quantum compass

Author:

Smith Luke DORCID,Glatthard JonasORCID,Chowdhury Farhan TORCID,Kattnig Daniel RORCID

Abstract

Abstract Quantum sensing enables the ultimate precision attainable in parameter estimation. Circumstantial evidence suggests that certain organisms, most notably migratory songbirds, also harness quantum-enhanced magnetic field sensing via a radical-pair-based chemical compass for the precise detection of the weak geomagnetic field. However, what underpins the acuity of such a compass operating in a noisy biological setting, at physiological temperatures, remains an open question. Here, we address the fundamental limits of inferring geomagnetic field directions from radical-pair spin dynamics. Specifically, we compare the compass precision, as derived from the directional dependence of the radical-pair recombination yield, to the ultimate precision potentially realisable by a quantum measurement on the spin system under steady-state conditions. To this end, we probe the quantum Fisher information and associated Cramér–Rao bound in spin models of realistic complexity, accounting for complex inter-radical interactions, a multitude of hyperfine couplings, and asymmetric recombination kinetics, as characteristic for the magnetosensory protein cryptochrome. We compare several models implicated in cryptochrome magnetoreception and unveil their optimality through the precision of measurements ostensibly accessible to nature. Overall, the comparison provides insight into processes honed by nature to realise optimality whilst constrained to operating with mere reaction yields. Generally, the inference of compass orientation from recombination yields approaches optimality in the limits of complexity, yet levels off short of the theoretical optimal precision bounds by up to one or two orders of magnitude, thus underscoring the potential for improving on design principles inherent to natural systems.

Funder

Office of Naval Research Global

Engineering and Physical Sciences Research Council

Leverhulme Trust

Publisher

IOP Publishing

Reference108 articles.

1. Quantum sensing;Degen;Rev. Mod. Phys.,2017

2. Quantum-enhanced measurements: beating the standard quantum limit;Giovannetti;Science,2004

3. Quantum sensors for biomedical applications;Aslam;Nat. Rev. Phys.,2023

4. SQUID-based microwave cavity search for dark-matter axions;Asztalos;Phys. Rev. Lett.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3