Affiliation:
1. Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
Abstract
Preparing macroscopic mechanical resonators close to their motional quantum groundstate and generating entanglement with light offers great opportunities in studying fundamental physics and in developing a new generation of quantum applications. Here we propose an experimentally interesting scheme, which is particularly well suited for systems in the sideband-unresolved regime, based on coherent feedback with linear, passive optical components to achieve groundstate cooling and photon-phonon entanglement generation with optomechanical devices. We find that, by introducing an additional passive element – either a narrow linewidth cavity or a mirror with a delay line – an optomechanical system in the deeply sideband-unresolved regime will exhibit dynamics similar to one that is sideband-resolved. With this new approach, the experimental realization of groundstate cooling and optomechanical entanglement is well within reach of current integrated state-of-the-art high-Q mechanical resonators.
Funder
European Research Council
Netherlands Organization for Scientific Research
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献