Preparation of Ag-Cu nanoparticle film using a dual-beam pulsed laser deposition for power electronic packaging

Author:

Zhou Bolong1,Jia Qiang1,Wang Yishu1,Li Dan1,Zhang Hongqiang2ORCID,Hu Huan1,Ma Limin1,Zou Guisheng3,Guo Fu14

Affiliation:

1. Faculty of Materials and Manufacturing, Beijing University of Technology 1 , Beijing 100124, China

2. School of Mechanical Engineering and Automation, Beihang University 2 , Beijing 100191, China

3. Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University 3 , Beijing 100084, China

4. School of Mechanical Electrical Engineering, Beijing Information Science and Technology University 4 , Beijing 100192, China

Abstract

Ag-Cu nanoparticles, integrating the advantages of Ag and Cu, are promising materials for power electronic packaging. In this work, a novel dual-beam pulsed laser deposition method was proposed to prepare an Ag-Cu nanoparticle film with various component ratios and used for die attach at low temperatures. The as-deposited Ag-Cu nanoparticle film was mainly composed of Ag-Cu solid solution, Ag element, and Cu element, and most of the nanoparticles were in the alloying state. The Ag-Cu sintered joint presented a dense microstructure with 10.8% porosity, and the shear strength of Ag-Cu sintered joints could reach 60 MPa at 250 °C. The sintered joint porosity increased as more Cu were added in the Ag-Cu nanoparticle film, resulting in a decrease in the interfacial connection ratio. The fracture mode of sintered joints gradually changed from the sintered layer to the mixed sintered layer and interface fracture. The dual-beam pulsed laser deposition method could guide in designing the component ratios of bimetallic nanoparticles.

Funder

National Natural Science Foundation of China

Beijing Municipal Commission of Education

Natural Science Foundation of Beijing Municipality

Publisher

Laser Institute of America

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3