Multispot laser welding for increased gap bridgability

Author:

Volpp Joerg1ORCID

Affiliation:

1. Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden

Abstract

Laser beam welding is a promising technology to enable automated high-quality welding procedures at significantly higher processing speeds compared to conventional processes. However, its usability is often limited by gap bridgability. This disadvantage is related to the small laser beam spot sizes that require low gap sizes for joining, which are often practically not available, and the desired welding without additional filler materials to enable high processing speeds without direction restrictions. New possibilities of beam shaping for process control are also available now for high-power laser processing and they show promising results. The resulting complex effects require additional investigation to understand the mechanisms and the use of the technologies for process improvements. Therefore, in this work, advanced beam shaping optics with up to four separate laser beam spots was used to understand the impact of multiple-spot welding on the process dynamics and gap bridgability. Gap bridgability was measured by an opening gap setup, while spatter amounts as indicators of process dynamics were measured by high-speed imaging. It was shown that multiple-spot laser welding can increase the gap bridgability, probably due to the initiated melt flow toward the joining partners. Symmetric separation of the keyholes toward the sheets increased the gap bridgability, while additional low-intensity spots in the center were able to stabilize the melt pool and reduce spattering.

Funder

Research Fund for Coal and Steel

EIT RawMaterials

Vetenskapsrådet

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3