Drop Detachment Under Intense Laser Irradiation

Author:

Volpp Joerg1ORCID

Affiliation:

1. Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden

Abstract

During laser processing, complex effects can occur regarding the laser-material interactions. A high laser energy input leads to surface melting and even boiling. The resulting recoil pressure can create the so-called keyhole, a vapor channel existing during welding and called cut front during laser cutting. On the keyhole front wall, the induced recoil pressure pushes the melt downwards and can ejects melt drops. Usually, those melt ejections are seen as undesired spattering or necessary waste to enable the cutting. However, outflow characteristics can tell more about the complex process behavior. Therefore, this work aimed to relate melt ejection formation effects to keyhole behavior in order to get a better understanding of the complex laser-matter-interactions and fluid flows. Axial beam shaping was used to create different energy inputs into the keyhole front walls. Beam shaping was done with an optic that can superposition up to four laser beams in axial direction, leading to varying intensity distributions on the inclined keyhole front walls. Based on high-speed image analysis, it was seen that different outflow characteristics occur depending on the beam shapes. A high intensity on the front keyhole wall could be related to high temperatures on the keyhole wall. The outflow mechanism was shown to be able to move from corrugating to atomizing drop generation at increasing temperature due to temperature-dependent material properties. The main influencing factors are assumed to be the vapor speed and the keyhole/drop diameters that define the outflow mechanism.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3