Simulation of liquid production and water cut dynamics using fluid flow model and neural networks

Author:

Legostaev Dmitry Yu.1,Kosyakov Vitaly P.1

Affiliation:

1. Tyumen Branch of the Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Abstract

In the oil industry, there is a noticeable tendency to use proxy modeling of various levels of complexity to perform operational predictive calculations, in particular machine learning methods that are actively developing in the context of digitalization and intellectualization of production processes. In this paper, using the example of a synthetic oil reservoir model development element, we present an approach to the joint use of a physically meaningful fluid flow model and machine learning methods for solving adaptation and prediction problems. A feature of the considered synthetic model is the presence of a pronounced zonal inhomogeneity of the permeability field. Within the framework of the proposed approach, a single-phase filtration model, simplified in comparison with the original formulation was used, the history matching of which was carried out by restoring the field of reservoir filtration parameters using a network of radial basis functions. Based on the reconstructed field, the connection coefficients between the wells were calculated, which qualitatively and quantitatively correspond to the true well connections. The next step was to train a recurrent neural network in order to predict the water cut of the produced fluid. The use of a recurrent neural network made it possible to reproduce the characteristic non-monotonic behavior of the water cut of the produced fluid, caused by non-stationary modes of operation of injection and production wells. A combination of the presented models makes it possible to predict the volume of the produced fluid and its phase composition. To assess the predictive properties of the models, the actual data set was divided into training and test intervals.

Publisher

Tyumen State University

Reference20 articles.

1. Aziz, Kh., & Settari, A. (2004). Petroleum reservoir simulation. Izhevsk Institute of Computer Science. [In Russian]

2. Andreev, V. B. (2013). Numerical methods. MAX Press. [In Russian]

3. Bekman, A. D., Pospelova, T. A., & Zelenin, D. V. (2020). A new approach to water cut forecasting based on results of capacitance resistance modeling. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 6(1), 192–207. https://doi.org/10.21684/2411-7978-2020-6-1-192-207 [In Russian]

4. Vlasov, A. I., & Mozhchil, A. F. (2018). Technology overview: From digital to intelligent field. PROneft. Professionally about Oil, (3), 68–74. https://doi.org/10.24887/2587-7399-2018-3-68-74 [In Russian]

5. Kanevskaya, R. D. (2002). Mathematical simulation of hydrodynamic processes of hydrocarbon deposits development. Izhevsk Institute of Computer Science. [In Russian]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3