A new approach to water cut forecasting based on results of capacitance resistance modeling

Author:

Bekman Alexander D.1,Pospelova Tatiana A.1,Zelenin Dmitry V.1

Affiliation:

1. Tyumen Petroleum Research Center

Abstract

For oil fields that are at a late stage of development, urgent tasks are the operational analysis of the development and optimization of the operating modes of injection wells. The demand for responsiveness often forces one to abandon the use of three-dimensional hydrodynamic models in favor of analytical ones such as CRMP. Using CRMP models allows you to quickly assess the trends in the impact of injection wells on producing wells and build reliable short-term forecasts for fluid production. Supplementing the traditional (single-phase) CRMP model with a water cut model also allows predicting oil production rates for producing wells and expands the capabilities of an operational analysis of the existing development system. In addition, an adequate water cut model allows using the CRMP model to solve the problem of optimizing the operating modes of the injection well stock. This article discusses the main known water cut models used in conjunction with the CRMP model, provides a brief analysis of their advantages and disadvantages. A new authorial mathematical model of water cut (“multi-characteristic model”) is proposed, which allows to establish the role of each injection well in changing the water content of the considered producer. An adaptation algorithm is also described, that is, the selection of unknown model coefficients implemented in Ariadna software (developed by Tyumen Petroleum Research Center LLC). The low computational complexity of the algorithm allows you to quickly simulate areas containing up to several hundred wells. The results of experiments on the use of a new mathematical model on a synthetic model of an oil reservoir are presented. The results of predicting water cut are compared with the results of previously known methods. The restrictions for using the new model, as well as directions for its development are indicated.

Publisher

Tyumen State University

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method for assessing well interference at under-gas cap zone using CRM material balance model;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2024-04-26

2. Simulation of liquid production and water cut dynamics using fluid flow model and neural networks;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2023-07-07

3. Study of the predictive ability of the CRM analytical material balance model as a part of a retrospective test on a real field;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2022

4. THE STUDY OF THE PREDICTIVE ABILITY OF NUMERICAL AND ANALYTICAL MODELS (THE CASE OF MUTUAL WELL IMPACT EVALUATION);Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3