Mathematical modeling of the processes of signal routing by logic matrix, information encoding and decoding in the biomorphic neuroprocessor

Author:

Pisarev Alexander D.1

Affiliation:

1. University of Tyumen

Abstract

At the University of Tyumen, a biomorphic hardware neuroprocessor based on a combined memristor-diode crossbar has been developed. The neuroprocessor implements a biomorphic spiking neural network with a large number of neurons and trainable synaptic connections between them. Large biomorphic neural networks make it possible to reproduce the functionality of the human brain cortical column. This provides new opportunities for information processing tasks by standalone neuroprocessor. When designing and optimizing the operation of the input and output devices, as well as the logic matrix of the neuroprocessor created based on large combined memristor-diode crossbars, physico-mathematical models are needed to simulate their work. This report presents the physico-mathematical models developed for this neuroprocessor: of the operation of a logic matrix cell built on the basis of simplified electrical models of a memristor and a Zener diode; of the process of the neurons output spikes routing of by the logic matrix to the synapses of other neurons; of processes of information encoding into biomorphic impulses and decoding of neural block output into a binary code. With the help of these models and numerical simulation, the operability of the input and output devices, as well as the logic matrix of the biomorphic neuroprocessor, is shown when processing incoming information. The originality of the models is associated with the specifics of the selected memristor-diode cell of the universal large logic matrix, which, in addition to its main work as a spikes router, is the basis of the electrical circuits of the input and output devices of the neuroprocessor. For numerical simulation of the operation of large electrical circuits containing memristor-diode crossbars, the original specialized program MDC-SPICE was used.

Publisher

Tyumen State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3