Energy efficient biomorphic pulse information coding in electronic neurons for the entrance unit of the neuroprocessor

Author:

Pisarev Alexander D.1ORCID

Affiliation:

1. Cand. Sci. (Tech.), Associate Professor, Department of Applied and Technical Physics, Head of Laboratory of Beam-Plasma Technologies, SEC “Nanotechnologies”, University of Tyumen

Abstract

This article studies the implementation of some well-known principles of information work of biological systems in the input unit of the neuroprocessor, including spike coding of information used in models of neural networks of the latest generation.<br> The development of modern neural network IT gives rise to a number of urgent tasks at the junction of several scientific disciplines. One of them is to create a hardware platform&nbsp;— a neuroprocessor for energy-efficient operation of neural networks. Recently, the development of nanotechnology of the main units of the neuroprocessor relies on combined memristor super-large logical and storage matrices. The matrix topology is built on the principle of maximum integration of programmable links between nodes. This article describes a method for implementing biomorphic neural functionality based on programmable links of a highly integrated 3D logic matrix.<br> This paper focuses on the problem of achieving energy efficiency of the hardware used to model neural networks. The main part analyzes the known facts of the principles of information transfer and processing in biological systems from the point of view of their implementation in the input unit of the neuroprocessor. The author deals with the scheme of an electronic neuron implemented based on elements of a 3D logical matrix. A pulsed method of encoding input information is presented, which most realistically reflects the principle of operation of a sensory biological neural system. The model of an electronic neuron for selecting ranges of technological parameters in a real 3D logic matrix scheme is analyzed. The implementation of disjunctively normal forms is shown, using the logic function in the input unit of a neuroprocessor as an example. The results of modeling fragments of electric circuits with memristors of a 3D logical matrix in programming mode are presented.<br> The author concludes that biomorphic pulse coding of standard digital signals allows achieving a high degree of energy efficiency of the logic elements of the neuroprocessor by reducing the number of valve operations. Energy efficiency makes it possible to overcome the thermal limitation of the scalable technology of three-dimensional layout of elements in memristor crossbars.

Publisher

Tyumen State University

Reference37 articles.

1. Barsky A. B. 2004. Neural Networks: Recognition, Management, Decision Making. Moscow: Finance and Statistics. [In Russian]

2. Bloom F., Leiserson Α., Hofstedter L. 1988. Brain, Mind, and Behavior. Translated from English. Moscow: Mir. [In Russian]

3. Bobylev A. N., Udovichenko S. Yu., Busygin A. N., Ebrahim A. H. 2019. “Increase of switching range of resistive memristor for realization of a greater number of synaptic states in a neuroprocessor”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 5, no 2, pp. 124-136. DOI: 10.21684/2411-7978-2019-5-2-124-136 [In Russian]

4. Backus J. 1993. “Is programming free from von Neumann style? Functional style and associated program algebra”. In: Lectures by Turing Prize Laureates. Moscow: Mir. [In Russian]

5. Dubrovsky D. I. (ed.). 2013. Global Future 2045. Converged Technologies (NBICS) and Transhumanist Evolution. Moscow: IBA. [In Russian]

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical modeling of the processes of signal routing by logic matrix, information encoding and decoding in the biomorphic neuroprocessor;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2022

2. Using neural networks for predicting the dynamics of water cut of horizontal wells;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3