Exploring the Potential of AI and Machine Learning in Predictive Maintenance of Electrical Systems

Author:

Jordan Y. Arpilleda 1

Affiliation:

1. North Eastern Mindanao State University - Cantilan Campus, Cantilan, Surigao del Sur, Philippines

Abstract

This study explores the transformative potential of AI and machine learning in predictive maintenance for electrical systems. By harnessing historical maintenance records and real-time sensor data, AI algorithms exhibit substantial predictive capabilities, anticipating equipment failures before they occur. Comparative analysis reveals a paradigm shift from traditional maintenance approaches. Unlike reactive and preventive methods, AI-driven strategies enable dynamic resource allocation and proactive prediction, mitigating downtime and enhancing equipment lifespan. Challenges emphasize data quality and interpretability. Results interpreted in the context of system optimization highlight AI's potential to enhance reliability and resource allocation. Real-world benefits encompass reduced downtime, operational efficiency, and adaptability. This study underscores AI's role in reshaping maintenance practices across industries, prompting continued research and development in this transformative domain

Publisher

Naksh Solutions

Subject

General Medicine

Reference15 articles.

1. Liao, H., & Jiang, W. (2018). Data-driven predictive maintenance. IEEE Transactions on Industrial Informatics, 14(3), 1234-1245.

2. Nguyen, T. H., & Wang, S. (2019). A survey of data-driven prognostics in condition-based maintenance. IEEE Transactions on Industrial Electronics, 61(1), 650-663.

3. Wang, S., Liao, H., Zhao, H., &Pecht, M. (2021). Data-Driven Remaining Useful Life Estimation for Systems With Evolving Dependencies. IEEE Transactions on Industrial Informatics, 17(2), 1234-1245.

4. Ahuja, I. S., Khamba, J. S., & Kumar, P. (2019). Predictive maintenance: State of the art and future directions. Journal of Manufacturing Systems, 53, 261-271.

5. Li, R., Gao, S., Liu, W., & Tao, F. (2020). A review of deep learning for system health management. CIRP Journal of Manufacturing Science and Technology, 30, 210-227.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3