Improving the Algorithm Study of YOLO in Steel Surface Defect Detection

Author:

Su Fu1,Wang Siying1

Affiliation:

1. College of Electrical Information, Southwest Petroleum University, Chengdu 610500, Sichuan, China

Abstract

To solve the problem of low detection accuracy caused by background interference and diverse target forms, a series of improvements are proposed to improve the detection accuracy. According to the various characteristics of steel surface defects, this paper presents the K-Means clustering algorithm to optimize the clustering results and quickly and accurately obtain the size of the prior box. In view of the small proportion of the target defect area in the overall image and background interference, a two-way attention module (TWA-Block) is proposed to establish the long-distance dependence of the spatial domain and channel domain features, and a background suppression function is designed to realize the division of defect areas. Experiments of the proposed improvements in the NEU-DET dataset based on the YOLO series model show that the detection accuracy of all the improved YOLO series models has improved, and the number of parameters will not increase substantially

Publisher

North Atlantic University Union (NAUN)

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Reference21 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3