1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015). https://www.tensorflow.org/. Retrieved 15 Feb 2023
2. Abu, M., Amir, A., Lean, Y.H., Zahri, N.A., Azemi, S.A.: The performance analysis of transfer learning for steel defect detection by using deep learning. J. Phys. Conf. Ser. 1755, 012041 (2021). https://doi.org/10.1088/1742-6596/1755/1/012041
3. Akhyar, F., Lin, C.Y., Kathiresan, G.S.: A Beneficial Dual Transformation Approach for Deep Learning Networks Used in Steel Surface Defect Detection, pp. 619–622. Association for Computing Machinery, Inc (2021). https://doi.org/10.1145/3460426.3463666
4. Amin, D., Akhter, S.: Deep Learning-Based Defect Detection System in Steel Sheet Surfaces, pp. 444–448. IEEE (2020). https://doi.org/10.1109/TENSYMP50017.2020.9230863
5. Benbarrad, T., Eloutouate, L., Arioua, M., Elouaai, F., Laanaoui, M.D.: Impact of image compression on the performance of steel surface defect classification with a cnn. J. Sens. Actuator Netw. 10 (2021). https://doi.org/10.3390/jsan10040073. https://www.mdpi.com/2224-2708/10/4/73