Importance of Some Specifications of Heterogeneous Architectures (CPU+GPU) for 3D Cone-Beam-CT Image Reconstruction Using OpenCL

Author:

Nouioua T.1,Belbachir A. H.2

Affiliation:

1. Department of Mathematics and Computer Sciences, Faculty of Exact sciences and sciences of Nature and life, University of Tebessa, Tebessa, Algeria

2. Laboratory of Analysis and Application of Radiation (LAAR), Engineering Physics Department, Faculty of Physics, University of Sciences and Technology of Oran Mohamed Boudiaf, Oran, Algeria

Abstract

Medical imaging has found an important way for routine daily practice using cone-beam computed tomography to reconstruct a 3D volume image using the Feldkamp-Davis-Kress (FDK) algorithm. This way can minimize the patient’s time exposure to X-rays. However, its implementation is very costly in computation time, which constitutes a handicap problem in practice. For this reason, the use of acceleration methods on GPU becomes a real solution. For the acceleration of the FDK algorithm, we have used the GPU on heterogeneous platforms. To take full advantage of the GPU, we have chosen useful features of the GPUs and, we have launched the acceleration of the reconstruction according to some technical criteria, namely the work-groups and the work-items. We have found that the number of parallel cores, as well as the memory bandwidth, have no effect on runtimes speedup without being rough in the choice of the number of work-items, which represents a real challenge to master in order to be able to divide them efficiently into work-groups according to the device specifications considered as principal difficulties if we do not study technically the GPU as a hardware device. After an optimized implementation using kernels launched optimally on GPU, we have deduced that the high capacities of the devices must be chosen with a rough optimization of the work-items which are divided into several work-groups according to the hardware limitations.

Publisher

North Atlantic University Union (NAUN)

Subject

General Biochemistry, Genetics and Molecular Biology,Biomedical Engineering,General Medicine,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3