Walnut Ripeness Detection Based on Coupling Information and Lightweight YOLOv4

Author:

Cui Kaixuan1,Su Shuchai2,Cai Jiawei1,Chen Fengjun1

Affiliation:

1. School of Technology, Beijing Forestry University, Beijing, 100083, China

2. Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing, 100083, China

Abstract

To realize rapid and accurate ripeness detection for walnut on mobile terminals such as mobile phones, we propose a method based on coupling information and lightweight YOLOv4. First, we collected 50 walnuts at each ripeness (Unripe, Mid-ripe, Ripe, Over-ripe) to determine the kernel oil content. Pearson correlation analysis and one-way analysis of variance (ANOVA) prove that the division of walnut ripeness reflects the change in kernel oil content. It is feasible to estimate the kernel oil content by detecting the ripeness of walnut. Next, we achieve ripeness detection based on lightweight YOLOv4. We adopt MobileNetV3 as the backbone feature extractor and adopt depthwise separable convolution to replace the traditional convolution. We design a parallel convolution structure with depthwise convolution stacking (PCSDCS) to reduce parameters and improve feature extraction ability. To enhance the model’s detection ability for walnuts in the growth-intensive areas, we design a Gaussian Soft DIoU non-maximum suppression (GSDIoU-NMS) algorithm. The dataset used for model optimization contains 3600 images, of which 2880 images in the training set, 320 images in the validation set, and 400 images in the test set. We adopt a multi-training strategy based on dynamic learning rate and transfer learning to get training weights. The lightweight YOLOv4 model achieves 94.05%, 90.72%, 88.30%, 76.92 FPS, and 38.14 MB in mean average precision, precision, recall, average detection speed, and weight capacity, respectively. Compared with the Faster R-CNN model, EfficientDet-D1 model, YOLOv3 model, and YOLOv4 model, the lightweight YOLOv4 model improves 8.77%, 4.84%, 5.43%, and 0.06% in mean average precision, 74.60 FPS, 55.60 FPS, 38.83 FPS, and 46.63 FPS in detection speed, respectively. And the lightweight YOLOv4 is 84.4% smaller than the original YOLOv4 model in terms of weight capacity. This paper provides a theoretical reference for the rapid ripeness detection of walnut and exploration for the model’s lightweight.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Green Walnuts on Trees Using the Improved YOLOv7 Model;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. FastQAFPN-YOLOv8s-based method for rapid and lightweight detection of walnut unseparated material;2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3