Affiliation:
1. School of Technology, Beijing Forestry University, Beijing, 100083, China
2. Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing, 100083, China
Abstract
To realize rapid and accurate ripeness detection for walnut on mobile terminals such as mobile phones, we propose a method based on coupling information and lightweight YOLOv4. First, we collected 50 walnuts at each ripeness (Unripe, Mid-ripe, Ripe, Over-ripe) to determine the kernel oil content. Pearson correlation analysis and one-way analysis of variance (ANOVA) prove that the division of walnut ripeness reflects the change in kernel oil content. It is feasible to estimate the kernel oil content by detecting the ripeness of walnut. Next, we achieve ripeness detection based on lightweight YOLOv4. We adopt MobileNetV3 as the backbone feature extractor and adopt depthwise separable convolution to replace the traditional convolution. We design a parallel convolution structure with depthwise convolution stacking (PCSDCS) to reduce parameters and improve feature extraction ability. To enhance the model’s detection ability for walnuts in the growth-intensive areas, we design a Gaussian Soft DIoU non-maximum suppression (GSDIoU-NMS) algorithm. The dataset used for model optimization contains 3600 images, of which 2880 images in the training set, 320 images in the validation set, and 400 images in the test set. We adopt a multi-training strategy based on dynamic learning rate and transfer learning to get training weights. The lightweight YOLOv4 model achieves 94.05%, 90.72%, 88.30%, 76.92 FPS, and 38.14 MB in mean average precision, precision, recall, average detection speed, and weight capacity, respectively. Compared with the Faster R-CNN model, EfficientDet-D1 model, YOLOv3 model, and YOLOv4 model, the lightweight YOLOv4 model improves 8.77%, 4.84%, 5.43%, and 0.06% in mean average precision, 74.60 FPS, 55.60 FPS, 38.83 FPS, and 46.63 FPS in detection speed, respectively. And the lightweight YOLOv4 is 84.4% smaller than the original YOLOv4 model in terms of weight capacity. This paper provides a theoretical reference for the rapid ripeness detection of walnut and exploration for the model’s lightweight.
Publisher
North Atlantic University Union (NAUN)
Subject
Electrical and Electronic Engineering,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献