Affiliation:
1. School of Foreign Studies, Lingnan Normal University, Zhanjiang 524048, China
Abstract
The current translation quality evaluation system relies on the combination of manual and text comparison for evaluation, which has the defects of low efficiency and large evaluation errors. In order to optimize the defects of the current quality evaluation system, a Japanese translation quality evaluation system based on deep neural network algorithm will be designed. In order to improve the processing efficiency of the system, the USB3.0 communication module of the hardware system will be optimized. Based on the hardware design, the reference translation map is used to extend the reference translation of Japanese translation. The evaluation indexes of over- and under-translation are set, and the evaluation of Japanese translation quality is realized after the parameters are determined by training the deep neural network using the sample set. The system functional test results show that the average data transmission processing time of the system is improved by about 31.27%, and the evaluation error interval is smaller and the evaluation is more reliable.
Publisher
North Atlantic University Union (NAUN)
Subject
Electrical and Electronic Engineering,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献