Affiliation:
1. CPI Power Engineering Co. Ltd., Shanghai, 200233, China
2. Sichuan Dincen Electrical Engineering Co., Ltd., Chengdu, 610056, China
Abstract
The current project cost system requires high data scale, small amount of data and large prediction deviation. In order to improve the prediction accuracy of the whole process cost of construction project, this paper designs a whole process project cost prediction system based on improved support vector machine. In the hardware part of the system, the control core adopts arm controller S3C6410 and introduces 4G communication module to analyze the actual engineering data with the support of hardware. In the software part, the whole process cost prediction index system of the construction project is established, the index is reduced by the principal component method, and the support vector machine is improved by particle swarm optimization algorithm to realize the whole process cost prediction of the project. The system function test results show that the average prediction deviation of the designed system is 4.11%, the average prediction deviation of the cost prediction system is 3.05%, and the average prediction deviation of the system is 1.57%.
Publisher
North Atlantic University Union (NAUN)
Subject
Electrical and Electronic Engineering,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献