EEG Dipole Source Localization using Deep Neural Network

Author:

Hui Zeng1,Ying Li2,Lingyue Wang2,Ning Yin2,Shuo Yang2

Affiliation:

1. (Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China)

2. (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China)

Abstract

Electroencephalography (EEG) inverse problem is a typical inverse problem, in which the electrical activity within the brain is reconstructed based on EEG data collected from the scalp electrodes. In this paper, the four-layer concentric head model is used for simulation firstly, four deep neural network models including a multilayer perceptron (MLP) model and three convolutional neural networks (CNNs) are adopted to solve EEG inverse problem based on equal current dipole (ECD) model. In the simulations, 100,000 samples are generated randomly, of which 60% are used for network training and 20% are used for cross-validation. Eventually, the generalization performance of the model using the optimal function is measured by the errors in the rest 20% testing set. The experimental results show that the absolute error, relative error, mean positioning error and standard deviation of the four models are extremely low. The CNN with 6 convolutional layers and 3 pooling layers (CNN-3) is the best model. Its absolute error is about 0.015, its relative error is about 0.005, and its dipole position error is 0.040±0.029 cm. Furthermore, we use CNN-3 for source localization of the real EEG data in Working Memory. The results are in accord with physiological experience. The deep neural network method in our study needs fewer calculation parameters, takes less time, and has better positioning results.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3