Affiliation:
1. College of Finance and Information, Ningbo University of Finance and Economics, Ningbo, 315175, China
Abstract
In order to improve the segmentation accuracy of brain tumor magnetic resonance medical image, a segmentation method of brain tumor magnetic resonance medical image based on multi-scale color wavelet texture features is proposed. The segmentation model of brain tumor magnetic resonance medical image is established, and the motion damage information of brain tumor magnetic resonance medical image is adaptively fused in the ultrasound imaging environment. The medical image information is enhanced by using the motion skeletal muscle block matching technology. According to the suspicious point feature matching method of brain tumor, the fusion detection and processing of brain tumor magnetic resonance medical image are carried out. The multi-scale color wavelet texture feature detection method is used to extract the image features of brain tumor MRI points, and the CT bright spot features are used to analyze the features of brain tumor MRI medical images. Combined with the adaptive neural network training method, the automatic detection of brain tumor magnetic resonance medical image is completed, and the suspected brain tumor points are extracted, so as to realize the segmentation of brain tumor magnetic resonance medical image. Simulation results show that the proposed method can effectively improve the segmentation accuracy of brain tumor MRI medical image, and has high resolution and accuracy for suspicious brain tumor detection.
Publisher
North Atlantic University Union (NAUN)
Subject
Electrical and Electronic Engineering,Signal Processing
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献