Research on Painting Image Classification Based on Transfer Learning and Feature Fusion

Author:

Yong Qian1ORCID

Affiliation:

1. Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 19860, Republic of Korea

Abstract

In order to effectively solve the problems of high error rate, long time consuming, and low accuracy of feature extraction in current painting image classification methods, a painting image classification method based on transfer learning and feature fusion was proposed. The global characteristics of the painting picture, such as color, texture, and form, are extracted. The SIFT method is used to extract the painting’s local features, and the global and local characteristics are normalized and merged. The painting images are preliminarily classified using the result of feature fusion, the deterministic and nondeterministic samples are divided, and the estimated Gaussian model parameters are transferred to the target domain via a transfer learning algorithm to alter the distribution of nondeterministic samples, completing the painting image classification. Experimental results show that the proposed method has a low error rate and low feature extraction time and a high accuracy rate of painting image classification.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference26 articles.

1. Research on the algorithm of painting image style feature extraction based on intelligent vision

2. Research on Digital Image Technology in Oil Painting Image Processing

3. Multi-Instance Learning Algorithm Based on LSTM for Chinese Painting Image Classification

4. Emotion-based painting image display system;T. Lee;Intelligent Automation and Soft Computing,2019

5. Chinese painting image classification based on convolutional neural network;B. Yang;Software Guide,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3